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A sufficient condition is obtained for the development of a finite-time singularity in a highly symmetric
Euler flow, first proposed by Kida@J. Phys. Soc. Jpn.54, 2132~1995!# and recently simulated by Boratav and
Pelz @Phys. Fluids6, 2757 ~1994!#. It is shown that if the second-order spatial derivative of the pressure
(pxx) is positive following a Lagrangian element~on thex axis!, then a finite-time singularity must occur.
Under some assumptions, this Lagrangian sufficient condition can be reduced to an Eulerian sufficient condi-
tion which requires that the fourth-order spatial derivative of the pressure (pxxxx) at the origin be positive for
all times leading up to the singularity. Analytical as well as direct numerical evaluation over a large ensemble
of initial conditions demonstrate that for fixed total energy,pxxxx is predominantly positive with the average
value growing with the numbers of modes.@S1063-651X~96!13008-7#

PACS number~s!: 47.27.Cn

The mechanisms by which a fluid generates intense small-
scale dynamics are crucial to our understanding of turbu-
lence. Once small scales are created spontaneously, dissipa-
tion intervenes, and the dynamical balance between the two
processes determines the character of turbulence. In particu-
lar, the dissipation rate of Navier-Stokes turbulence depends
crucially on how the vorticity scales with the Reynolds num-
ber. Therefore, it is of great importance to study how small
scales can be generated in a fluid by the action of vortex
stretching controlled by the nonlinearities in the three-
dimensional ~3D! Euler equation~which is the infinite-
Reynolds-number limit of the Navier-Stokes equation!,

]v

]t
1v•“v52“p. ~1!

Here, for incompressible velocity fields, the self-consistent
pressurep must satisfy the equation¹2p52“•(v•“v).
The main question is whether the solution to Eq.~1! becomes
singular in finite time for a smooth initial condition with
finite energy.

Mathematicians have provided some useful and rigorous
constraints on the nature of possible singularities in 3D flows
@1–4#, but a physical model which explicitly demonstrates
the singularity in a mathematically rigorous way remains
elusive. It has been claimed@5,6# that a recent analytical
model developed for a symmetric initial condition exhibits a
finite-time singularity, but the demonstration relies on some
strong assumptions which, while physically plausible, have
not yet been substantiated formally or verified by a suitably
designed numerical experiment. The analytical results@5#
and@6# are suggestive: if one begins from an initial state with
symmetries that are preserved by the Euler equation for all
time, then the problem of finite-time singularities of the Eu-
ler equation could be somewhat more tractable.

This paper is stimulated by the recent numerical experi-
ment of Boratav and Pelz~BP! @7# on a highly symmetric
initial flow field, first proposed by Kida@8#. Due to the high
symmetry of the Kida flow, BP were able to simulate the 3D
Navier-Stokes equation with high spatial resolution and rela-

tively small viscosity.~For the computer runs reported by
BP, the Reynolds number Re~51/n! varies from 1000 to
5000 and the maximum total resolution is 10243.! Within the
limits of the spatial resolution, BP report that the maximum
vorticity scales as (tc2t)21, and attribute its eventual satu-
ration to the presence of viscosity. In a subsequent paper@9#,
BP report a loss of regularity in the strain tensor, and find,
furthermore, that the spatial locations of the almost-divergent
strain and vorticity are not coincident.

The principal goal of this paper is to present a sufficient
condition for the development of a finite-time singularity in
the Kida flow. The demonstration of this sufficient condition
provides physical insight into a possible mechanism for sin-
gularity formation in this highly symmetric geometry. Two
forms of this sufficient condition are given: a Lagrangian
form for a moving point, and a more useful Eulerian form for
a stationary point~the origin! that can be derived from the
Lagrangian form under some assumptions. Though we are
unable to provide an analytical proof, there is some numeri-
cal evidence@10# that the Eulerian sufficient condition is
satisfied for the specific initial condition used in the numeri-
cal experiment of BP. We present additional statistical evi-
dence that the underlying symmetries of the Kida flow make
it highly probable that this condition is also valid for a large
ensemble of initial conditions.

The symmetries of Kida flows have been discussed in
detail in @8#. Here we build these symmetries into the repre-
sentations forv andp. The components of the velocity field
v5(vx ,vy ,vz) can be written as vx5u(x,y,z), vy
5u(y,z,x), vz5u(z,x,y), whereu can be expressed in Fou-
rier series,

u~x,y,z!5(
lmn

almnsinlx cosmy cosnz. ~2!

Here (l ,m,n) are natural numbers which represent the three
components of a wave vector (lÞ0). In order to satisfy the
symmetries and the condition“•v50, the following condi-
tions must hold:
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l ,m,n must be all odd or all even, ~3!

almn5~21! lalnm , ~4!

(
lmn

C

lalmn50, ~5!

where the last summation~denoted byC! is over all permu-
tations of any three natural numbers (l ,m,n), i.e., lalmn
1mamnl1nanlm50. By ~2! and~5!, it can be seen that forx
close to the origin,v5O(uxu3). In particular, the initial state
considered by both Kida@8# and BP isu0: a1,3,151, a1,1,3
521, with all other terms set to zero. For this initial state,
vx5]vx/]x50 at t50 for all x.

With u represented by~2!, it can be shown that the pres-
surep is of the formp5( lmnplmncoslx cosmycosnz, where
plmn , using the Poisson equation for the pressure, is given by

plmn5~ lAlmn1mAmnl1nAnlm!/~ l 21m21n2!.

with Almn defined by

~v•“v!x[(
lmn

Almnsinlx cosmy cosnz.

It can be shown thatAlmn also satisfies~3! and ~4! ~with
almn replaced byAlmn! as well as~5!, provided the summa-
tion in ~5! is carried out over all (l ,m,n). Note thatAlmn is a
quadratic function ofalmn . If there are two termsalmn and
apqr in u, then there are terms with the following (l ,m,n)
values inAlmn :

~ u l6pu,um6qu,un6r u!,~ u l6qu,um6r u,un6pu!,

~ l6r u,um6pu,un6qu!, ~6!

and their permutations. By~5!, we obtain plmn5pmnl
5pnlm5(21)l plnm . From ~1!, we obtain the time evolution
equation ofalmn ,

ȧlmn1Almn2 lplmn50, ~7!

where the overdot denotes time derivative. Equation~7! and
the mode-generation scheme~6! provide a prescription for
the dynamical excitation of modes with increasingly large
wave numbers, or a cascade of energy to small scales. If this
process happens fast enough, then there may be a finite-time
singularity.

Since the Euler equation preserves the Kida symmetries
for all time, the selection rules imposed onalmn , Almn , and
plmn by these symmetries are preserved by Eq.~7!. By ~5!
and ~7!, we obtain the useful relation

pxx[2(
lmn

l 2plmn50, ~8!

wherepxx denotes the second spatial derivative ofp at the
origin. It follows that¹2p50 at the origin.

Let us now consider the flow along the liney5z50. By
~2!, we obtainvy5vz50, andvx5u5( lmnalmnsinlx. Note
that the vorticity is also identically zero along this line. We
definea[]xvx , b[]yvy , and g[]zvz , wherea1b1g

50 by the incompressibility condition. The dynamical equa-
tion for a can be found by taking thex derivative of~1!. We
obtain

ȧ1a252pxx5(
lmn

l 2plmncoslx~ t !. ~9!

Equations similar to~9! can be written forb andg. From~9!,
we obtain the following sufficient condition for a finite-time
singularity: If pxx.0 for all time following a Lagrangian
element, thena will be singular in finite time. However, in
order to test this condition, we need to evaluatepxx by fol-
lowing a fluid element. It may be possible to test this condi-
tion numerically, but it is not convenient to do so analyti-
cally. We, therefore, attempt to obtain an Eulerian sufficient
condition that can be evaluated at a fixed point~the origin!.

Using ~1!, we write

v̇x52px5(
lmn

lplmnsinlx~ t !, ~10!

where the overdot denotes total time derivative along a fluid
element moving in a trajectoryx5x(t). By ~8!, for x close to
zero, we obtain the Taylor expansion

v̇x52
pxxxx
6

x31O~x5!, ~11!

wherepxxxx is the fourth-order spatial derivative at the ori-
gin, given by pxxxx5( lmnl

4plmn . Note that at the origin,
although ¹2¹2p53pxxxx16pxxyy50, pxxxx is nonzero in
general. For further reference, note also thatpxxxx(x) is a
symmetric function ofx. The fourth-order derivativepxxxx
plays an important role because all other lower-order deriva-
tives vanish at the origin in this highly symmetric flow. From
the exact equation~9!, we obtain

ȧ1a252
pxxxx
2

x2~ t !1O~x4!. ~12!

It is easy to see, using the selection rules forplmn , that
pxx(x) is symmetric andpx(x) is antisymetric aboutx
5p/2. Also, sincepx50 at x50 andx5p/2, we infer that
pxx has to assume both positive and negative values within
the range 0,x,p/2. Hence, there must be a region ofx in
which amplification ofa2 occurs. This leads to the next ques-
tion: is there always a fluid element in the region of ampli-
fication? To answer this question, let us assume that there
exists a range 0,x,X(t) in which pxxx(x).0 for all time
before a possible singularity appears. Furthermore, we as-
sume thatX(t).C, whereC is a finite positive constant for
all time ~including t→tc!. Sincepxxxx(0)5px(0)50 by the
symmetry conditions andpxx(0)50 by ~8!, it follows from
the assumption above and by simple integration fromx50
that the quantitiespx(x), pxx(x), andpxxx(x) are also posi-
tive within the range 0,x,X. Then by~10! and the fact that
vx(x,t50)50, there exists a fluid element with the La-
grangian coordinatex(t) within this range (0,C) always ac-
celerating towards the originx50. However, since the con-
dition vx(x50,t)50 is always maintained by the symmetry
of the flow, the fluid element cannot pass through the origin.
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Therefore,x(t) always decreases but remains positive, even
when the velocity becomes very large~or even singular!.
This seeming contradiction between what the trajectory tends
to do and what it is constrained to do by symmetry is pre-
cisely the mechanism for the development of the finite-time
singularity. On the one hand,x(t) is always accelerated to-
wards the origin and tends to reach the origin in finite time.
On the other hand,x(t) cannot actually reach the origin be-
cause the symmetry conditions forbid it. The system resolves
this contradiction by having the velocity derivativea
5]vx /]x blow up in finite time, since the fluid element with
finite and increasing velocity is forced to go infinitesimally
close to the point with zero velocity (x50). This behavior is
reflected in Eq.~9! according to whicha tends to negative
infinity in finite time due to the presence of thea2 term. If
the time dependence ofa is determined dominantly by thea2

term, thena→(tc2t)21 as t→tc . Under the assumptions
discussed above, we have thus demonstrated that the condi-
tion pxxxx.0 at the origin is a sufficient condition for a
finite-time singularity.

We caution that the assumption of existence of a finite
X(t) is a strong one, and may limit the applicability of our
sufficient condition at a fixed point. In some physical cases,
as the singularity develops,X(t) may actually tend to zero as
t→tc . If that occurs and a fluid element falls out of the
amplification region,tc may tend to infinity. However, we
speculate that if a shrinkingX(t) is accompanied bypxxxx
growing sufficiently fast, then the finite-time singularity may
be supported because a fluid element is then accelerated fast
enough to remain inX(t) even asX(t)→0.

The sufficient condition for singularity~in its moving-
point or fixed-point form! does not violate the theorems
proved by Beale-Kato-Majda@1# and Ponce@2# which can be
essentially summarized as follows: If there occurs a finite-
time singularity in an initially smooth Euler flow of finite
energy, then the time integral of the maximum norm of the
vorticity @1# ~deformation tensor@2#! must tend to infinity as
t→tc . We remark that our discussion of the sufficient con-
dition involves they5z50 axis on which the vorticity is
identically zero by symmetry, but there is no restriction on
the vorticity off the axis. If the sufficient condition is satis-
fied, the deformation tensor must be singular near the origin
at least as fast as 1/(tc2t), but this leaves open the possibil-
ity that the vorticity can blow up at another spatial location.
Indeed, BP@9# report that the locations of near-divergent
strain and vorticity do not coincide in space. Such a possi-
bility is not inconsistent with@1# and @2#. BP @10# have re-
cently checked that sufficient condition in their numerical
simulation for the initial condition in one of their runs~run
D3!, and their data indicates thatpxxxx does remain positive
and growing for all times fromt50 to the singularity time.
~In particular,pxxxx is found to take the following sequence
of values: 40.53 att50, 226.4 at t51.5, 2.6423104 at
t52.0, 2.8023105 at t52.125, and 1.1113107 at t52.25.
The extrapolated singularity timetc reported by BP for this
run is 2.21.!

Though the numerical evidence presented above is sug-
gestive, it cannot be regarded as definitive proof of the ex-
istence of the singularity. Furthermore, we cannot deduce
generic properties of Kida flows from the numerical evidence
for one specific initial condition. We now proceed to give a

statistical demonstration that the positivity ofpxxxx is highly
probable over a large ensemble of initial conditions.

First, we introduce a minimal, independent set of modes
un of the Kida flow such that any flowu satisfying the sym-
metries of the Kida flow can be written asu5(nanun ,
wherean are real constants. Then, the following is the only
possible choice for the set of independent modes that yield a
minimum number of terms for each mode and satisfy the
symmetries~4! and ~5!. For any three distinct, odd positive
integersl ,m,n, there are, in general, two independent modes:

u1 : almn52alnm5m, amnl52amln52 l ,
~13!

u2 : almn52alnm5n, anlm52anml52 l .

By ~5!, the third mode (u3 : amnl52amln52n, anlm5
2anml5m) is not independent and can be writtenu3
5(nu12mu2)/ l . In practice, we can choose any two of the
above set of three as independent. However, if two of the
three integers are equal, there is only one independent mode,
alml52allm51. Also, there is no mode forl5m5n. The
initial condition used by BP, that is,u0 : a1,3,151, a1,1,35
21, is clearly an independent mode. For any three even
natural numbers, there are also, in general, only two indepen-
dent modes:

u1 : almn5alnm5m, amnl5amln52 l ,
~14!

u2 : almn5alnm5n, anlm5anml52 l .

The third mode, which is not independent, is againu3
5(nu12mu2)/ l . If two of the three numbers are equal or
one of them is zero, then there is only one independent
mode. Also, there is no mode if two numbers are zero or one
number is zero and the other two equal, or three numbers are
equal.

The quantitypxxxx ~at the origin! is a quadratic function of
u. We writepxxxx5P(u,u). With the representation ofu, we
obtain

pxxxx5(
n

an
2P~un ,un!1(

n
(
mÞn

anamP~un ,um!.

~15!

Defining Pnm5@P(un ,um)1P(um ,un)#/2, we can also
write pxxxx5(n(manPnmam . We have a constructive proof
using MATHEMATICA that P(un ,un).0. The symbolic ma-
nipulations are too long to be presented here and will be
discussed in a separate publication. In order to determine the
positivity of pxxxx, we now need to consider the second term
on the right-hand side of~15!, which involves the cross
terms. The contributions from the cross terms cannot be ne-
glected in principle, and they can be positive or negative
depending on the sign ofan . To assess their importance, let
us consider an example with two modes, i.e.,u5amum
1anun , so that

P~u,u!5am
2Pmm1an

2Pnn12amanPmn . ~16!

The cross termPnm is given by the relation 2Pnm5P(un
1um ,un1um)2Pnn2Pmm. Note that the cross term be-
tween an odd mode and an even mode is always zero due to
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the selection rules on the pressure. For the positivity of
P(u,u) in ~16!, it is sufficient to havePmmPnn>Pnm

2 . This
relation is found to be true numerically if eitherum or un is
the initial flow u0 defined above, or the mode witha3,3,1
51 anda3,1,3521. However, the conditionPmmPnn>Pnm

2

is not always true for any two modes. Instead, we have
shown by usingMATHEMATICA that

Pnm
2

PmnPnn
→0 as

km
2

kn
2→0, ~17!

wherekm , kn are the wave numbers of the modesum , un .
The limit ~17! is attained faster by odd modes than by the
even modes. Hence, for those cases, which make up most of
the pairs of modes for a flow spanning wave numbers over
several orders of magnitude, the contribution from off-
diagonal terms is much smaller than that from diagonal
terms.

To estimate the contributions from the cross terms sys-
tematically in a general case, let us consider a flow repre-
sented byN modes (n51,N) that includes all modes with
kn,kN . For normalization, we define an energy functional

E~u![
1

p3 E
0

2p

dxE
0

2p

dyE
0

2p

dzu252(
lm

alm0
2 1(

lmn
almn
2 ,

~18!

which is conserved in an Euler flow. For the specific initial
condition used in@7# and @8#, we obtainE(u0)52. Hence,
we normalize theun in ~18! such thatE(un)52. We now
perform a Monte Carlo calculation ofP(u,u). The calcula-
tion is carried outM times withM@1, with an chosen ran-
domly each time within a range specified by an energy spec-
trum in k space of the formE(k)}k2m to simulate the
energy distribution over different length scales. In most of
our calculations, we choosem53 which is the spectrum ob-
served by BP neart5tc @7#. ~As discussed later, the qualita-
tive trends observed are not sensitive to variations inm.! In

Table I, we report numerical results withN<2144, orkN
2

<1352. We defineh as the percentage of cases with negative
vales forpxxxx, and the averaged quantities are

^P&[
1

M (
i51

M

pxxxx,

~19!

^PD&[
1

M (
i51

M

(
n51

N

an
2Pnn5

1

M (
i51

M

PD ,

wherePD is the contribution from the diagonal terms. Also,
we define the deviations and the average ratio as

^d&[F 1M (
i51

M

~pxxxx2^P&!2G1/2,
^dD&[F 1M (

i51

M

~PD2^PD&!2G1/2, ~20!

^r &[
1

M (
i51

M p
xxxx

PD
.

The convergence of the data is tested for largeM in two
cases. The fluctuations in all quantities are found to be typi-
cally less than 2%.

We examine the sensitivity of the results to the assumed
form of the energy spectrum by recalculating theN5177
case withm522,0,2,4,6. It is found for these cases thath
becomes 1.4%, 1.31%, 0.91%, 0.35%, 0.26%, respectively.
Hence, the effect ofm is seen not to be qualitatively impor-
tant. From the data in Table I, we see thath is less than 1%
for most cases, except the cases with very smallN. If this
trends continues to hold for largerN values, then the prob-
ability that pxxxx.0 is much larger than the probability that
pxxxx,0. Note also that for all the cases discussed above,
^P&'^PD&'^d&, ^r &'1. This implies that the average con-

TABLE I. Some results of the Monte Carlo calculations ofpxxxxwith n53 showing thatpxxxx.0 in most
cases. See text and Eqs.~27! and ~28! for definitions of the variables.

N kN
2 M ~units of 106! h ~%! ^P& ^PD& ^d& ^dD& ^r &

11 44 2 1.09 20.4 20.4 21.9 8.6 1.00
37 99 2 0.96 41.9 41.9 45.5 11 1.00
64 136 3 0.82 61.8 61.2 67.6 13 1.01
136 219 3 0.77 98.2 98.0 108 14 1.01
211 296 4 0.70 130 131 141 16 1.00
290 360 7 0.64 161 162 174 17 1.00
449 480 10 0.64 212 214 230 18 0.99
612 587 20 0.61 267 264 290 19 1.01
777 691 30 0.61 307 308 334 20 1.00
945 780 40 0.61 349 351 377 21 0.99
1114 875 50 0.58 394 390 423 22 1.01
1283 963 60 0.56 429 430 464 22 1.00
1455 1043 80 0.58 470 467 505 23 1.01
1624 1123 100 0.59 500 502 537 23 1.00
1973 1275 160 0.54 573 571 616 24 1.00
2144 1352 200 0.54 605 602 675 25 1.01
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tribution topxxxx is dominantly from the self terms, and that
the cross terms mostly cancel each other upon summation.
We also see from Table I that^P&}kN

2 which, in light of our
remarks above, is further evidence in support of a finite-time
singularity because the data clearly shows the growth of
pxxxx as length scales decrease.

The numerical results presented above are based mostly
on statistics. Since the deterministic dynamics of Kida flows
do not have to follow the most probable path, we cannot
regard the evidence above as a dynamical proof that
pxxxx.0, However, the evidence does suggest that the con-
dition pxxxx.0 is highly probable and is strongly favored by
the symmetry properties of the Kida flow, independent of the
precise dynamical details emerging from a specific initial
condition.

The high symmetry of the Kida flow enables us to obtain
some analytical and numerical results that provide strong
physical evidence in support of a finite-time singularity in
this class of Euler flows. The assumed symmetry properties
preserve the geometric structure of the initial state for all
times. Such a singularity may be unstable if the symmetry
conditions are relaxed, and so the qualitative implications of
these results for more general 3D configurations remain un-
clear. Till 1990, numerical results on 3D flows were incon-
clusive despite the sophistication of the numerical methods
employed@11–15#. Finite-time singularities have been re-
ported in axisymmetric flows with swirl@16–18#, but the
results are controversial@19,20#. More recently, prior to the
work of BP, two other numerical experiments@21,22# have

presented evidence in support of a finite-time singularity in
3D Euler flows. In particular, Kerr’s simulation@22# involves
antiparallel vortex tubes, and has qualitatively similarities
with that of BP in that the singularity occurs in the vicinity
of the symmetry axis. The work of Kerr has its antecendents
in earlier studies of vortex reconnection with antiparallel and
orthogonal vortex tubes@23–29#.

In conclusion, we have proposed a sufficient condition for
a finite-time singularity in a Kida flow. We have shown that
if the second-order spatial derivative of the pressure (pxx) is
positive following a Lagrangian element~on thex axis!, then
a finite-time singularity must occur. Under some assump-
tions, this Lagrangian sufficient condition can be reduced to
an Eulerian sufficient condition which requires that the
fourth-order spatial derivative of the pressure (pxxxx) at the
origin be positive for all times leading up to the singularity.
Though we are unable to provide an analytical proof that this
is indeed satisfied in the simulation of BP@7#, there is nu-
merical evidence@10# in support of this condition. Further-
more, we have presented strong physical evidence which
suggests that it is highly probable that the Eulieran form of
the sufficient condition for singularity is satisfied for a large
ensemble of initial conditions.
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