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A sufficient condition is obtained for the development of a finite-time singularity in a highly symmetric
Euler flow, first proposed by Kidgl. Phys. Soc. Jpis4, 2132(1995] and recently simulated by Boratav and
Pelz [Phys. Fluids6, 2757 (1994]. It is shown that if the second-order spatial derivative of the pressure
(pxy) is positive following a Lagrangian elemefan thex axis), then a finite-time singularity must occur.
Under some assumptions, this Lagrangian sufficient condition can be reduced to an Eulerian sufficient condi-
tion which requires that the fourth-order spatial derivative of the presqyrg,) at the origin be positive for
all times leading up to the singularity. Analytical as well as direct numerical evaluation over a large ensemble
of initial conditions demonstrate that for fixed total enerpy,,y is predominantly positive with the average
value growing with the numbers of mod¢$1063-651X96)13008-7

PACS numbdps): 47.27.Cn

The mechanisms by which a fluid generates intense smaltively small viscosity.(For the computer runs reported by
scale dynamics are crucial to our understanding of turbuBP, the Reynolds number Re=1/v) varies from 1000 to
lence. Once small scales are created spontaneously, dissifE00 and the maximum total resolution is 1824Vithin the
tion intervenes, and the dynamical balance between the twiimits of the spatial resolution, BP report that the maximum
processes determines the character of turbulence. In particuerticity scales ast(—t) %, and attribute its eventual satu-
lar, the dissipation rate of Navier-Stokes turbulence dependstion to the presence of viscosity. In a subsequent g&jer
crucially on how the vorticity scales with the Reynolds num-BP report a loss of regularity in the strain tensor, and find,
ber. Therefore, it is of great importance to study how smalffurthermore, that the spatial locations of the almost-divergent
scales can be generated in a fluid by the action of vortestrain and vorticity are not coincident.
stretching controlled by the nonlinearities in the three- The principal goal of this paper is to present a sufficient
dimensional (3D) Euler equation(which is the infinite- condition for the development of a finite-time singularity in

Reynolds-number limit of the Navier-Stokes equajon the Kida flow. The demonstration of this sufficient condition
provides physical insight into a possible mechanism for sin-

ﬂ+v Vv=_V 2 gularity formation in this highly symmetric geometry. Two

gt ot P- forms of this sufficient condition are given: a Lagrangian

form for a moving point, and a more useful Eulerian form for

Here, for incompressible velocity fields, the self-consistenta stationary pointthe origin that can be derived from the
pressurep must satisfy the equatioW?p=—V-(v-Vv). Lagrangian form under some assumptions. Though we are
The main question is whether the solution to Elg.becomes unable to provide an analytical proof, there is some numeri-
singular in finite time for a smooth initial condition with cal evidence[10] that the Eulerian sufficient condition is
finite energy. satisfied for the specific initial condition used in the numeri-

Mathematicians have provided some useful and rigorousal experiment of BP. We present additional statistical evi-
constraints on the nature of possible singularities in 3D flowslence that the underlying symmetries of the Kida flow make
[1-4], but a physical model which explicitly demonstratesit highly probable that this condition is also valid for a large
the singularity in a mathematically rigorous way remainsensemble of initial conditions.
elusive. It has been claimegd,6] that a recent analytical The symmetries of Kida flows have been discussed in
model developed for a symmetric initial condition exhibits adetail in[8]. Here we build these symmetries into the repre-
finite-time singularity, but the demonstration relies on somesentations fov andp. The components of the velocity field
strong assumptions which, while physically plausible, hava/z(vx,vy,vz) can be written asv,=u(Xy,z), vy
not yet been substantiated formally or verified by a suitably=u(y,z,x), v,=u(z,x,y), whereu can be expressed in Fou-
designed numerical experiment. The analytical resiBis rier series,
and[6] are suggestive: if one begins from an initial state with
symmetries that are preserved by the Euler equation for all
time, then the problem of finite-time singularities of the Eu- u(x,y,z)zz ampSinx cosmy conz 2
ler equation could be somewhat more tractable. Imn

This paper is stimulated by the recent numerical experi-
ment of Boratav and PelBP) [7] on a highly symmetric Here (,m,n) are natural numbers which represent the three
initial flow field, first proposed by Kidé8]. Due to the high components of a wave vector#£0). In order to satisfy the
symmetry of the Kida flow, BP were able to simulate the 3Dsymmetries and the conditiovi- v=0, the following condi-
Navier-Stokes equation with high spatial resolution and relations must hold:
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I,m,n must be all odd or all even, (3 =0 by the incompressibility condition. The dynamical equa-
tion for a can be found by taking the derivative of(1). We
almn:(_l)lalnmv (4) obtain
c . 2 2
>, lajm,=0, (5) ata=—py= % 1“PimnCOIX(1). ©)

Imn

where the last summatiofdenoted byC) is over all permu-  Equations similar t¢9) can be written fo3 andy. From(9),
tations of any three natural numberkrg,n), i.e., lay,, W€ obtain the following sufficient condition for a finite-time
+mag,n+na,m=0. By (2) and(5), it can be seen that for singularity: If Pxx>0 for_ all time fqllpwu_]g a Lagrangian
close to the originy=0O(|x|3). In particular, the initial state element, therw will be singular in finite time However, in
considered by both Kidf8] and BP isug: a;3,=1, a;1 order to test this condition, we need to evalupig by fol-
=—1, with all other terms set to zero. For this initial state, |0Wing a fluid element. It may be possible to test this condi-
ve=dv.Jax=0 att=0 for all x. tion numerically, but it is not convenient to do so analyti-
§ Withxu represented by?), it can be shown that the pres- cally. We, therefore, attempt to obtain an Eulerian sufficient
surep is of the formp=X,;,,Pym,COSX COSTY COTZ, Where condition that can be evaluated at a fixed pgthe origin.

Pimn, Using the Poisson equation for the pressure, is given by USing (1), we write

Pimn=(Aimnt MAy i+ N AL/ (124 mP+n?). 0= —Pe=2 1PimeSinx (), (10)
Imn

with A, defined by
where the overdot denotes total time derivative along a fluid
) — ; element moving in a trajectomy= x(t). By (8), for x close to
(V- V) %“n AimpSifix cosny conz zero, we obtain the Taylor expansion

It can be shown thaf,, also satisfied3) and (4) (with - Pxxox g 5
aimn replaced byA,,,) as well as(5), provided the summa- UxT T g X +0O(x%), (12)
tion in (5) is carried out over alll;m,n). Note thatA,, is a
guadratic function of,,. If there are two terms&,,,, and  where p,,yy is the fourth-order spatial derivative at the ori-
@pqr IN U, then there are terms with the following,ih,n) gin, given by pyxs= Zimnl *Pimn. Note that at the origin,

values inA - although V2V2p=3p,yuxt 6Pyxyy=0, Pxxxx IS NONZEro in
general. For further reference, note also that,.(x) is a
([I=pl,Im=al,[n=r]), (I =q|,|m=r|,[n=p]), symmetric function ofx. The fourth-order derivatived,
plays an important role because all other lower-order deriva-
(I=rl.Jm=pl,In=q), (6) tives vanish at the origin in this highly symmetric flow. From

and their permutations. By5), we obtain pj,n=Pmn the exact equatiof®), we obtain

=ppm=(—1)'pjnm. From(1), we obtain the time evolution

. ° pXXXX
equation ofayy, ata’=— "+

3 X2(t)+0O(x%). (12)

mnt Amn—Pimn=0, 7 : . ,
imn” Aima~ [Pimn @ It is easy to see, using the selection rules figy,,, that

where the overdot denotes time derivative. Equatidrand ~ Pxx(X) is symmetric andp,(X) is antisymetric aboutx
the mode-generation scheni® provide a prescription for = /2. Also, sincep,=0 atx=0 andx=m/2, we infer that
the dynamical excitation of modes with increasingly largePxx has to assume both positive and negative values within
wave numbers, or a cascade of energy to small scales. If thi§€ range 8<x<m/2. Hence, there must be a regionxofn
process happens fast enough, then there may be a finite-tiniéhich amplification ofa? occurs. This leads to the next ques-
singularity. tion: is there always a fluid element in the region of ampli-
Since the Euler equation preserves the Kida Symmetriegcation? To answer this question, let us assume that there
for all time, the selection rules imposed ap,,, Ajmn, and  exists a range €x<X(t) in which p,,(x)>0 for all time
Pimn bY these symmetries are preserved by & By (5) before a possible singularity appears. Furthermore, we as-
and (7), we obtain the useful relation sume thaiX(t)>C, whereC is a finite positive constant for
all time (includingt—t;). Sincep,y{0)=px(0)=0 by the
=—E 2 _o 8 symmetry conditions ang,,(0)=0 by (8), it follows from
Pao= &L Pimn="% (8) the assumption above and by simple integration feom0
that the quantitie®,(X), pxx(X), andpy,(X) are also posi-
wherep,, denotes the second spatial derivativepoéit the  tive within the range 6cx<<X. Then by(10) and the fact that
origin. It follows thatV?p=0 at the origin. vy(X,t=0)=0, there exists a fluid element with the La-
Let us now consider the flow along the liye=z=0. By  grangian coordinatg(t) within this range (0C) always ac-
(2), we obtainvy=v,=0, andvy=u= X2 ameSinix. Note  celerating towards the origix=0. However, since the con-
that the vorticity is also identically zero along this line. We dition v,(x=0,t) =0 is always maintained by the symmetry

define a=d,v,, B=dy,, and y=dv,, wherea+pB+y  of the flow, the fluid element cannot pass through the origin.
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Therefore x(t) always decreases but remains positive, everstatistical demonstration that the positivity mf,, is highly
when the velocity becomes very larger even singulgr  probable over a large ensemble of initial conditions.

This seeming contradiction between what the trajectory tends First, we introduce a minimal, independent set of modes
to do and what it is constrained to do by symmetry is pre-u, of the Kida flow such that any flow satisfying the sym-
cisely the mechanism for the development of the finite-timemetries of the Kida flow can be written as=X,a,up,
singularity. On the one hana(t) is always accelerated to- wherea, are real constants. Then, the following is the only
wards the origin and tends to reach the origin in finite time.possible choice for the set of independent modes that yield a
On the other hand(t) cannot actually reach the origin be- minimum number of terms for each mode and satisfy the
cause the symmetry conditions forbid it. The system resolvesymmetries(4) and (5). For any three distinct, odd positive
this contradiction by having the velocity derivative  integers,m,n, there are, in general, two independent modes:
= dvy/ox blow up in finite time, since the fluid element with

finite and increasing velocity is forced to go infinitesimally Ul @mp=—&nm=M, &mp=—8min="1,
close to the point with zero velocitkE& 0). This behavior is _ (13
reflected in Eq(9) according to whiche tends to negative Up:  @mn=~apm=N, aym=—ahm=—1.

infinity in finite time due to the presence of thé term. If
the time dependence afis determined dominantly by the? r X ind d d b .
term, thena— (t.—t) ! ast—t,. Under the assumptions —anm=m) is not independent and can be written

discussed above, we have thus demonstrated that the cond_'—(nul_r't"uzf)/tIH In prac_tu;e, Wedcarl cﬂoose anyftvt\\ll\(/) of ftr;ﬁ
tion pyy,>0 at the origin is a sufficient condition for a above set of three as independent. However, 1T two of the

finite-time singularity. three integers are equal, there is only one independent mode,

We caution that the assumption of existence of a finiteim= —&im=1. Also, there is no mode for=m=n. The
X(t) is a strong one, and may limit the applicability of our |n|t|allcond|t|on usgd by BP, that islg: a;3,=1, 81,13~
sufficient condition at a fixed point. In some physical cases,_l' is clearly an independent _mode. For any thr_ee even
as the singularity developX(t) may actually tend to zero as natural numpers, there are also, in general, only two indepen-
t—t.. If that occurs and a fluid element falls out of the dent modes:
amplification regiont, may tend to infinity. However, we
speculate that if a shrinking(t) is accompanied by,

By (5), the third mode @3: a,n=—amnr=—"n, &um=

Ul Qmn=&nm=M,  @mp=amin=—1,

growing sufficiently fast, then the finite-time singularity may U 8= 8=MN. fu=a.=—I (14

be supported because a fluid element is then accelerated fast 2+ CmaTSnm T Salm Sl '

enough to remain iX(t) even asx(t)—0. _ The third mode, which is not independent, is agaig
The sufficient condition for singularityin its moving- =(nu;—mu,)/I. If two of the three numbers are equal or

proved by Beale-Kato-Majdl] and Poncé¢2] which canbe  mode. Also, there is no mode if two numbers are zero or one
essentially summarized as follows: If there occurs a finiteyyymper is zero and the other two equal, or three numbers are
time singularity in an initially smooth Euler flow of finite equal.

energy, then the time integral of the maximum norm of the The quantityp,,, (at the origin is a quadratic function of
vorticity [1] (deformation tensof2]) must tend to infinity as |, \we write Prooo= P(U,U). With the representation of, we
t—t.. We remark that our discussion of the sufficient con-gpiain

dition involves they=z=0 axis on which the vorticity is

identically zero by symmetry, but there is no restriction on )

the vorticity off the axis. If the sufficient condition is satis- Proco= 20 4P (U, Up) + 2 andmP(Up,Upm).

fied, the deformation tensor must be singular near the origin " nomen (15)

at least as fast as 1/(—t), but this leaves open the possibil-
ity that the vorticity can blow up at another spatial location. pefining P,,,=[P(u,,um)+P(un,u,)]/2, we can also
Indeed, BP[9] report that the locations of near-divergent write p, === manPnmdm. We have a constructive proof
strain and vorticity do not coincide in space. Such a possiysing MATHEMATICA that P(u,,,u,)>0. The symbolic ma-
bility is not inconsistent witf{1] and[2]. BP [10] have re-  pjpulations are too long to be presented here and will be
cently checked that sufficient condition in their numerical discussed in a separate publication. In order to determine the
simulation for the initial condition in one of their rur(ﬂ.]n pos|t|v|ty of Pxxxx, WE NOW need to consider the second term
D3), and their data indicates thpfxx does remain positive on the right-hand side of15), which involves the cross
and growing for all times from=0 to the singularity time.  terms. The contributions from the cross terms cannot be ne-
(In particular, py«xy is found to take the following sequence glected in principle, and they can be positive or negative
of values: 40.53 at=0, 226.4 att=15, 2.64Xx10" at  depending on the sign @f,. To assess their importance, let
t=2.0, 2802(105 at t=2.125, and 111>1107 at t=2.25. us consider an examp|e with two modes, i_e;amum
The extrapolated singularity tintg reported by BP for this +a u,, so that
run is 2.21)

Though the numerical evidence presented above is sug- P(u,u)=a2Pmmt a2Pnn+2amanPmn- (16)
gestive, it cannot be regarded as definitive proof of the ex-
istence of the singularity. Furthermore, we cannot deducd&he cross ternmP,, is given by the relation B,,=P(u,
generic properties of Kida flows from the numerical evidence+u,,,U,+Uy) — Ppn— Pmm- Note that the cross term be-
for one specific initial condition. We now proceed to give atween an odd mode and an even mode is always zero due to
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TABLE I. Some results of the Monte Carlo calculationgf,, with =3 showing thap,,,,>0 in most
cases. See text and Eq87) and (28) for definitions of the variables.

N K2 M (units of 16) 7 (%) (P) (Pp) (d) (dp) (r)

11 44 2 1.09 20.4 20.4 21.9 8.6 1.00
37 99 2 0.96 41.9 41.9 455 11 1.00
64 136 3 0.82 61.8 61.2 67.6 13 1.01
136 219 3 0.77 98.2 98.0 108 14 1.01
211 296 4 0.70 130 131 141 16 1.00
290 360 7 0.64 161 162 174 17 1.00
449 480 10 0.64 212 214 230 18 0.99
612 587 20 0.61 267 264 290 19 1.01
777 691 30 0.61 307 308 334 20 1.00
945 780 40 0.61 349 351 377 21 0.99
1114 875 50 0.58 394 390 423 22 1.01
1283 963 60 0.56 429 430 464 22 1.00
1455 1043 80 0.58 470 467 505 23 1.01
1624 1123 100 0.59 500 502 537 23 1.00
1973 1275 160 0.54 573 571 616 24 1.00
2144 1352 200 0.54 605 602 675 25 1.01

the selection rules on the pressure. For the positivity offable |, we report numerical results witi<2144, orkﬁI
P(u,u) in (16), it is sufficient to haveP ;P = Pﬁm. This  <1352. We define; as the percentage of cases with negative
relation is found to be true numerically if eithey, or u, is  vales forp,,y, and the averaged quantities are

the initial flow uy defined above, or the mode withs 3,

=1 andaz; ;=—1. However, the conditioh,,P,,= Pﬁm 1
is not always true for any two modes. Instead, we have (P) M Poooc
shown by usinguATHEMATICA that

(19
2 K2 1 XX 2 1 M
P =— =
P 0 a5z =0, an (Po)=j 2, 2, @Pm=iy 2 Po.
mn' nn n
wherek.., k. are the wave numbers of the modes, u wherePy, is the contribution from the diagonal terms. Also,
my n [} n- - .. .
The limit (17) is attained faster by odd modes than by the'V® define the deviations and the average ratio as
even modes. Hence, for those cases, which make up most of 1 M 12
the pairs of modes for a ﬂow spanning W_ave_numbers over (dy= o 2 (Proo— (P2
several orders of magnitude, the contribution from off- i=1
diagonal terms is much smaller than that from diagonal
terms. 1M , 12
To estimate the contributions from the cross terms sys- (do)=| 1 Zl (Po—(Pp))*| , (20)
tematically in a general case, let us consider a flow repre- a

sented byN modes G=1,N) that includes all modes with M
k,<ky. For normalization, we define an energy functional (= i D Proxxx
M= P

_ 1 2w 27 27 u'Z 5 2
BW="3 J'O dXJO dyfo dz _2% a'm0+%:n Aimm: The convergence of the data is tested for lakgein two
(18) cases. The fluctuations in all quantities are found to be typi-
cally less than 2%.

which is conserved in an Euler flow. For the specific initial We examine the sensitivity of the results to the assumed
condition used i 7] and[8], we obtainE(uy)=2. Hence, form of the energy spectrum by recalculating tNe=177

we normalize theu,, in (18) such thatE(u,)=2. We now case withu=-2,0,2,4,6. It is found for these cases that
perform a Monte Carlo calculation &#(u,u). The calcula- becomes 1.4%, 1.31%, 0.91%, 0.35%, 0.26%, respectively.
tion is carried outM times withM>1, with a,, chosen ran- Hence, the effect of. is seen not to be qualitatively impor-
domly each time within a range specified by an energy spedant. From the data in Table I, we see thais less than 1%
trum in k space of the formE(k)xk™# to simulate the for most cases, except the cases with very smNallf this
energy distribution over different length scales. In most oftrends continues to hold for largé values, then the prob-
our calculations, we chooge= 3 which is the spectrum ob- ability that p,,>0 is much larger than the probability that
served by BP near=t. [7]. (As discussed later, the qualita- pyyxx<0. Note also that for all the cases discussed above,
tive trends observed are not sensitive to variationginin ~ (P)~(Pp)~(d), (r)~1. This implies that the average con-
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tribution to py,x IS dominantly from the self terms, and that presented evidence in support of a finite-time singularity in
the cross terms mostly cancel each other upon summatio8D Euler flows. In particular, Kerr's simulatidi22] involves
We also see from Table | thaP)e=kZ which, in light of our ~ antiparallel vortex tubes, and has qualitatively similarities
remarks above, is further evidence in support of a finite-timévith that of BP in that the singularity occurs in the vicinity
singularity because the data clearly shows the growth off the symmetry axis. The work of Kerr has its antecendents
Pyxxx @S length scales decrease. in earlier studies of vortex reconnection with antiparallel and
The numerical results presented above are based mostfthogonal vortex tube23—-29.
on statistics. Since the deterministic dynamics of Kida flows In conclusion, we have proposed a sufficient condition for
do not have to follow the most probable path, we cannog finite-time singularity in a Kida flow. We have shown that
regard the evidence above as a dynamical proof thaf the second-order spatial derivative of the pressymg)(is
Py 0, However, the evidence does suggest that the corpositive following a Lagrangian elemefan thex axis), then
dition pyyc>0 is highly probable and is strongly favored by @ finite-time singularity must occur. Under some assump-
the symmetry properties of the Kida flow, independent of thetions, this Lagrangian sufficient condition can be reduced to
precise dynamical details emerging from a specific initialan Eulerian sufficient condition which requires that the
condition. fourth-order spatial derivative of the pressupg,f,) at the
The high symmetry of the Kida flow enables us to obtainorigin be positive for all times leading up to the singularity.
some analytical and numerical results that provide stronghough we are unable to provide an analytical proof that this
physical evidence in support of a finite-time singularity in iS indeed satisfied in the simulation of BP], there is nu-
this class of Euler flows. The assumed symmetry propertiegierical evidenc¢10] in support of this condition. Further-
preserve the geometric structure of the initial state for allmore, we have presented strong physical evidence which
times. Such a singularity may be unstable if the symmetrysuggests that it is highly probable that the Eulieran form of
conditions are relaxed, and so the qualitative implications othe sufficient condition for singularity is satisfied for a large
these results for more general 3D configurations remain urénsemble of initial conditions.
clear. Till 1990, numerical results on 3D flows were incon-
clusive despite the sophistication of the numerical methods We are grateful to Dr. O. Boratav and Professor R. Pelz
employed[11-15. Finite-time singularities have been re- for communicating their numerical data on the sufficient
ported in axisymmetric flows with swif16—18, but the  condition for singularity. This research is supported by the
results are controversigl9,20. More recently, prior to the NSF Grant No. ATM 93-10157 and the AFOSR Grant No.
work of BP, two other numerical experimeril,22 have  F49620-93-1-0071.
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